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Abstract

In the design process of an accelerator cavity,

optimization of the geometry parameters is necessary

in order to tune the device. Finding the ideal set

of parameters can be challenging and numerically

expensive, as each evaluation requires the numerical

solution of Maxwell’s eigenvalue problem on the geometry

at hand. The goal of this work is to efficiently employ

a gradient-descent based optimization approach which

takes multiple tuning objectives into account and ensures

a correct matching of modes.

1 Introduction

For complex geometries such as the TESLA cavity,

numerical methods are required to determine the

structure’s eigenfrequencies. As they sensitively

depend on the geometry of the structure, geometry

parameters need to be determined carefully in the design

process of the cavity. While sampling approaches are

straightforward to implement, they might need many

evaluations of the model, to find a suitable set of

parameters. In this work, we formulate an optimization

problem which takes the requirements of cavity design

into account.

2 Isogeometric Analysis

We discretize the computational domain by Isogeometric

Analysis (IGA), which is based on using the same

basis functions for both the geometry representation and

analysis, namely B-splines and NURBS. If we employ the

same basis functions as were used in the construction of

the CAD geometry, no geometry modeling-related error

is introduced. B-spline curves are defined from control

points and the B-spline basis functions. Tensor products

of the B-splines allow for a representation of surfaces and

volumes. Details for this particular model are given in [4].

3 Problem formulation

Starting from Maxwell’s equations and assuming a

bounded, simply connected parametrized domain Ωp and

perfect electric conducting (PEC) boundary conditions on
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l

Figure 1: Design of the TESLA cavity.

∂Ωp, we derive the formulation

curl (curlE) = λE inΩp

E× n = 0 on ∂Ωp

(1)

where E denotes the electric field strength, µ and ε
the permeability and permittivity, respectively, and n

the outwards pointing normal vector. By deriving the

weak formulation and spatial descretization, we obtain a

discrete generalized eigenvalue problem. We denote the

solution by the eigenpair (λ(p),e(p)) in dependence of p

and the frequency f(p) =
√
λ(p)/(2π

√
µε).

As a first optimization goal, we would like to achieve

a given eigenvalue λref by determining the appropriate

parameter p. With the basic squared-error cost function

g(λ(p)) = (λref − λ(p))
2
, (2)

we can formulate the optimization problem

min
p

g(λ(p)) s.t. K(p)e(p) = λ(p)M(p)e(p) (3)

with the generalized eigenvalue problem given by the

stiffness matrix K(p) and mass matrixM(p) as constraint.

4 Tuning of the TESLA cavity

We consider variations in three geometry parameters

of the TESLA cavity [1] following the tuning procedure

as described in [2], in order to tune the cavity towards

the desired resonant frequency and field flatness of the

accelerating mode. The tuned parameters are the length

of the first half-cell l1, the length of the last half-cell l2 and
the equator radius of the mid-cells Req, see Fig. 1.

Objective function The dynamics of the particle beam

are affected by the electric field. Errors in phase and

amplitude of the electric field cause beam degradation



and losses [2] and the accelerating voltage should be

maximized. Therefore, the tuning parameters need to be

optimized in such a way that the accelerating electric field

has the same magnitude in each cavity cell. Hence, we

employ the field flatness criteria

η1 = 1−
(maxj |Epeak,j | −minj |Epeak,j |)

E(|Epeak,j)|
, (4)

η2 = 1−
std(Epeak,j)

E(|Epeak,j |)
(5)

introduced in [2] as a measure for an even distribution of

the electric field peaks Epeak along the axis of the cells.

To keep the field quality and as such the beam quality

within acceptable limits, we require η1, η2 = 0.95 for a

well tuned cavity. To consider the field flatness in the

optimization, we combine the former objective function (2)

with the quality characteristics for field flatness, i.e.

g(p) = (1−η1)+(1−η2)+α(fref −f(p))
2
+β ||pdiff||2 (6)

with the additional weight α. We penalize deviations pdiff
from the original geometry and add a penalty term with

β > 0 in order to find the local minimum which requires

the smallest deviations from the nominal values.

Numerical results We use the Matlab function fmincon
with the interior point algorithm to solve the optimization

problem and compute the eigenvalue problem with the

eigs function based on an Arnoldi method. When not

providing fmincon with the gradients of the objective

function, it approximates the derivatives by forward finite

differences. In the full paper we show how shape

derivatives with respect to the control points can be used

as an efficient closed-form alternative.

We consider the TESLA cavity from three cells and with

attached beampipes. To limit deformations, we permit

variations of up to ±2mm for each parameter. The

reference frequency was chosen as 1.3GHz, which is the
desired accelerating frequency for the TESLA cavity. For

the objective function, we choose weight α = 10−15 Hz
−2

and the penalty parameter β = 2
3 · 10−2. The thereby

obtained optimal tuning parameters are shown in Tab. 1.

We yield a field flatness with η1 = 0.9973 and η2 = 0.9817.

Parameter nominal value [mm] tuning [mm]

l1 56.0 +0.5573
l2 57.0 +0.6709
Req 103.3 +0.5880

Table 1: Optimal values for the tuning parameters.

5 Eigenvalue Crossings

During the shape optimization of a cavity its eigenvalues

may cross. This is illustrated in the following for a pillbox

cavity, see Fig. 2. When selecting the first eigenmode

at r = 5.5 cm, which corresponds to the TM010 mode,

and optimizing towards a target frequency of 2.5GHz, we
would optimize a different mode if further considering the

first one, namely the TE111 mode, when traversing the

crossing of the eigenfrequencies at r = 4.92 cm. This

issue is also described e.g. in [3]. This can be mitigated

by checking the correct matching in the optimization

iterations. The approach is based on [4] and details are

given in the full paper.
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Figure 2: Eigenvalue crossing in the cylindrical pillbox

cavity when modifying the radius.

6 Conclusion

In this paper we have presented an efficient way to

tune the TESLA cavity towards a resonant frequency and

field flatness while keeping the deviations small. This

approach can easily be adapted to also be used in the

design of new cavities, taking into account further design

goals. The optimization is enhanced by using shape

derivatives and eigenvalue tracking.
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